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The preparation of enantiomerically pure threo-b-amino-a-hydroxy acids via 1,3-dipolar cycloadditions
of imine dipolarophiles with the chiral isomünchnone derived from (5R)-5-phenylmorpholin-3-one 1
is described. The cycloadducts were obtained with excellent diastereofacial- and exo-selectivity. Subse-
quent hydrolysis and chemoselective exocyclic amide cleavage afforded the threo-b-amino-a-hydroxy
acids with recovery of the initial chiral auxiliary.

� 2009 Published by Elsevier Ltd.
1. Introduction

b-Amino-a-hydroxy acids are typically prepared by methods
that utilise asymmetric epoxidation,1 Sharpless asymmetric
dihydroxylation,2 and chiral auxiliary-based strategies.3,4 They
are an important component in many biologically active com-
pounds,5–8 in particular Taxol� and Taxotere�.9,10 Previous work
within the group has developed a carbonyl ylide system11 based
on the chiral auxiliary 5-phenylmorpholin-3-one 1. Cycloadditions
of this system with selected aldehyde dipolarophiles have been
shown to afford cycloadducts with excellent diastereoselectivities,
although the scope of the reaction was limited to electron-deficient
aldehydes. Subsequent manipulation of the cycloadducts afforded
enantiomerically pure a,b-dihydroxyacids, allowing the recovery
of the initial chiral material.12

Herein, we report a significantly more reproducible and effi-
cient synthesis of the key carbonyl ylide precursor 2, its highly dia-
stereoselective cycloadditions with a variety of imine
dipolarophiles to afford cycloadducts in moderate to good yields
and their subsequent efficient conversion into enantiomerically
pure threo-b-amino-a-hydroxy acids.

2. Results and discussion

The carbonyl ylide precursor 2 was synthesised from auxiliary 1
via diamide 3 prepared in 84% yield following Sato’s diketene
methodology.13 Compound 3 was subsequently treated with
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polystyrene-bound benzenesulfonyl azide,14 for ease of purification,
giving the diazo adduct 4 in a reproducible 91% yield. Finally, deacet-
ylation15 of 4 was achieved using pyrrolidine, to afford carbonyl
ylide precursor 2 in 87% yield (Scheme 1). This synthesis represents
a significant improvement over our earlier methodology.

Cycloadditions with the isomünchnone, derived from the rho-
dium-catalysed decomposition of 2, with the imine dipolarophile
5a were initially studied in order to optimise conditions. A range
of solvents, temperatures and addition protocols for this cycloaddi-
tion were surveyed and it was found that use of nitromethane as
solvent proved to be a key element, affording 6a in 43% purified
yield (Table 1).16 Inspection of the crude reaction material revealed
no other cycloadduct to be present. X-ray crystallographic analysis
of 6a showed cycloaddition to have occurred on the face of the car-
bonyl ylide anti to the phenyl substituent with the anisyl group in
an exo-configuration (Fig. 1).17

Following this optimisation study, the scope of this conversion
was studied using aromatic imine dipolarophiles bearing both
electron-withdrawing and electron-donating substituents on the
aromatic ring (Scheme 2). The highest yield was obtained for the
reaction between 2 and the imine derived from benzaldehyde
and benzylamine 6c and all cycloadditions occurred with the same
excellent diastereofacial- and exo-selectivity (Table 2), with only
one diastereoisomer being identified in the crude material in all
cases. Comparison of the NMR spectroscopic data for these cyc-
loadducts with those of 6a,16 indicated that the additions had all
occurred in the same anti-exo manner.

Cycloadducts 6a–e were subjected to mild acid hydrolysis,
using a THF/water mixture and p-toluenesulfonic acid catalyst
(1 mol %). The hydrolysis products 7a–e could not be purified by
chromatography, as they appeared to exist as an equilibrium
mixture of ring-chain tautomers; therefore the crude hydrolysis
products 7a–e were subjected to selective exocyclic amide bond
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Table 1
Effect of temperature and solvent on cycloaddition

Solvent Temperature Yield (%)

CH2Cl2 �78 �C 0
CH2Cl2 0 �C 7
CH2Cl2 rt 12
CH2Cl2 Reflux 10
THF rt 3
THF Reflux 0
EtOAc rt 0
CHCl3 rt 2
MeOH rt 0
CH3NO2 rt 43

Figure 1. X-ray crystal structure of 6a.
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Table 2
Yields of cycloadducts

Entry R Yield (%) Diastereoisomer

6a OMe 43 exo-I
6b NMe2 21 exo-I
6c H 70 exo-I
6d NO2 47 exo-I
6e Cl 30 exo-I
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cleavage with lithium hydroperoxide following the methodology of
Evans (Scheme 3).18 Purification of products 8a–e and recovery of
the initial chiral auxiliary 1 were achieved through column chro-
matography.17 The pure chiral auxiliary 1 was recovered in good
to excellent yields, and the desired threo-b-amino-a-hydroxy acids
were isolated in reasonable to good yields over the two-step
sequence (Table 3). It is worth noting that both the methyl ester
O
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Table 3
The preparation of b-amino-a-hydroxy acids and the recovery of the chiral auxiliary

Cycloadduct R Yield of 8 (%) Recovery of 2 (%)

6a OMe 59 90
6b NMe2 32 84
6c H 80 95
6d NO2 65 71
6e Cl 61 83
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and the free amine derivatives of 8c have been used to access the
C-13 side chain of Taxol�.19
3. Conclusion

In conclusion, we have developed a highly diastereocontrolled
synthesis of enantiopure b-amino-a-hydroxy acids, via the cyc-
loadditions of imines with the carbonyl ylide derived from chiral
precursor 1. After cleavage, the chiral auxiliary 1 was recovered
in excellent yield, with the b-amino-a-hydroxy acids 8a–e isolated
in reasonable to good yields. Optimisation studies of the carbonyl
ylide generation/cycloaddition step demonstrated the dramatic
effect of the use of nitromethane as a solvent.
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